icono-texto

Escrito en Calculo Diferencial Sin Comentarios.

Continuidad en los Límites en Cálculo Diferencial definiremos e significado que es el mismo en lenguaje cotidiano.Es decir que una función (f) es continua en [x=a] debe entenderse como que su gráfica no sufre interrupción en [a] que no se rompe ni tiene saltos o huecos.

En la Continuidad en un intervalo: una función [f] es continua en un intervalo [A,B] si es continua en todo número del intervalo. En la siguiente figura se muestran tres valores de [x] en los que la función no es continua.

Los demás puntos del intervalo [A,B] la gráfica no se interrumpe y decimos que la función es continua en ellos.Para que una función se continua en [x=a] se requieren tres cosas mostradas en la siguiente imagen: LEER MÁS »