icono-texto

Cálculo de Máximos y Mínimos en el Criterio de la segunda derivada – Cálculo Diferencial

El Cálculo de Máximos y Mínimos en el Criterio de la segunda derivada en Cálculo Diferencial, concluyendo con el segundo método para calcular los máximos y mínimos de una función y=f(x):

1.-Calcular la primera derivada
2.-Encontrar los valores críticos
3.-Determinar la segunda derivada.
4.-Evaluar la segunda derivada en cada un de los valores críticos para conocer el signo de ésta.

LEER MÁS

1 estrella2 estrellas3 estrellas4 estrellas5 estrellas (Ninguna valoración todavía)
Cargando…
icono-texto

Ejemplos de cálculo de máximos y mínimos relativos con el criterio de la primera derivada – Cálculo Diferencial

Ejemplos de calculo de máximos y mínimos relativos con el criterio de la primera derivada en el Calculo Diferencial en la función y=x3 – 6x2 + 9x y después elaborar la gráfica correspondiente.

Al calcular la derivada e la función:

dy/dx=3x2 -12x + 9

Ejemplo de relativos con el criterio de la primera derivada

LEER MÁS

1 estrella2 estrellas3 estrellas4 estrellas5 estrellas (1 votos, promedio: 5.00 de 5)
Cargando…
icono-texto

Los Relativos con el criterio de la primera derivada en máximos y mínimos – Cálculo Diferencial

Los Relativos con el criterio de la primera derivada en máximos y mínimos – Cálculo Diferencial

Como criterio de la primera derivada para calcular los máximos y míimos relativos de una función.

1.- Calcular la derivada de y=f(x)

2.-Al igualar a cero la derivada de y=f(x) y resolver la ecuación, estas soluciones se omitir algunos valores críticos.

3.-Analizar el siglo de dy/dx un valor antes y uno después de cada valor crítico sin omitir alguno de ellos.

LEER MÁS

1 estrella2 estrellas3 estrellas4 estrellas5 estrellas (Ninguna valoración todavía)
Cargando…